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Goal: Decompose effort in addressing
parallelism and functional correctness

Parallelism Correctness. Functional Correctness.
Handle independently of Reason about

complex & sequential sequentially, without
functional properties. thread interleavings.
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Goal: Decompose effort in addressing
parallelism and functional correctness

1. NDSeq: easy-to-write spec for parallelism.

2. Runtime checking of NDSeq specifications.

Nondeterministic

. Functional
specification

¢

Parallel
program
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Motivating Example

» Goal: Find minimum-cost item in list.

for (i in [1..N]>;‘m
C = min_cost

b = lower_bound(i)

if b >=c:
continue

cost = compute_cost(i)

if cost < min_cost: Output: min_cost and
min_cost = cost

min_item = |
| & >

min_item.




Motivating Example

» Goal: Find minimum-cost item in list.

for (i in [1..N]):

C = min_cost
b = lower_bound(i)
if b >= c: Prune when i cannot
continue have minimum-cost.
cost = compute_cost(i)

if cost < min_cost: Computes cost of
min_cost = cost item i. Expensive.
It min_item = |

J/

1 Computes cheap lower
bound on cost of i.
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Motivating Example

» Goal: Find minimum-cost item in list.

for (i in [1..N]):
C = min_cost
b = lower_bound(i)
if b >= c: How do we

continue ~ parallelize this
cost = compute_cost(i) o
if cost < min_cost: code’

min_cost = cost
min_item = |



Parallel Motivating Example

» Goal: Find min-cost item in list, in parallel.

parallel-for (i in [1..N]): Loop iterations can be
C = min_cost run in parallel.

b = lower_bound(i)
if b >=c:
continue
cost = compute cost(i)
synchronized (lock):
if cost < min_cost: Updates to best are
min_cost = cost protected by lock.
min_item = |




Parallel Motivating Example

» Goal: Find min-cost item in list, in parallel.

parallel-for (i in [1..N]):
¢ = min_cost Claim: Parallelization

b = lower_bound(i) is clearly correct.
if b >=c:

continue

 How can we specity
cost = compute cost(i)

synchronized (lock): this parallel
if cost < min_cost: correctness?
min_cost = cost D

min_item = |
9



Specifying Parallel Correctness

» Idea: Use sequential program as spec.

parallel-for (i in [1..N]): for (i in [1..N]):
C = min_cost m C = min_cost
b = lower_bound(i) . b = lower_bound(i)

if b >=c: if b >=c:
continue m continue
cost = compute_cost(i) cost = compute_cost(i)
synchronized (lock):
if cost < min_cost: if cost < min_cost:
min_cost = cost min_cost = cost

min_item = | min_item = |
0



ParaIIeI-SequentiaI Equivalence?

1 bound 58 (2 bound 5 min_item: —

parallel-for 1in [1..N]):

c = min_cost N

b = lower_bound(i)

if b >=c:

continue Al prune?(1)

cost = compute cost(i)
synchronized (lock):
if cost < min_cost:
min_cost = cost
min_item = |




ParaIIeI-SequentiaI Equivalence?

1 bound 5 2 bound 5

parallel-for (i in [1..N]):

"¢ = min_cost

b = lower_bound(i)
if b >=c:
.___continue

\

cost = compute_cost(i)'

synchronized (lock):

if cost < min_cost:
min_cost = cost
min_item = |

min_item: —
min_cost: o

WAl prune?(1)

prune?(2)



ParaIIeI-SequentiaI Equivalence?

1 bound 5 2 bound 5

parallel-for (i in [1..N]):
C = min_cost
b = lower_bound(i)
if b >=c:

continue prune?(1)

“ cost = compute_cost(i)" prune?(2)

synchronized (lock): -
update(2)

if cost < min_cost:
min_cost = cost

min_item = | J

-

min_item: (2)
min_cost: 5




ParaIIeI-SequentiaI Equivalence?

bound 5 bound 5 min_item: (2)

min_cost: 5
parallel-for (i in [1..N]):
C = min_cost
b = lower_bound(i)
if b >=c:

continue prune?(1)

cost = compute cost(i)
synchronized (lock):

prune?(2)
update(2)
update(1)

if cost < min_cost:
min_cost = cost
min_item = |




ParaIIeI-SequentiaI Equivalence?

bound 5 bound 5 min_item: (2)

min_cost: 5
parallel-for (i in [1..N]): But sequential program:
C = min_cost * Returns min_item = (1).
b = lower_bound(i) * Prunes (2).
if b >=c:
continue prune?(1) prune?(1)

cost = compute cost(i)

) lock) prune?(2) update(1)
synchronized (lock):
if cost < min_cost: update(2) prune?(2)
min_cost = cost
— update(1
min_item = |




Specifying Parallel Correctness

» Parallel program has freedom to:

parallel-for (i in [1..N]): Process items in a
C = min_cost
b = lower_bound(i)
ifb>=c:

continue | Avoid pruning by
cost = compute_cost(i) scheduling check

synchronized (lock): before updates.
if cost < min_cost:

min_cost = cost
min_item = |

nondeterministic order.
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Specifying Parallel Correctness

Must give sequential spec this freedom.

parallel-for (i in [1..N]): Process items in a

C = min cost inisti
_ n rministic order.
b = lower_bound(i) NORAEISFMINISHE Orce

ifb>=c:

continue | Avoid pruning by
cost = compute_cost(i) scheduling check

synchronized (lock): before updates.
if cost < min_cost:

min_cost = cost
min_item = |
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Nondeterministic Sequential Spec

Runs iterations in any order.

parallel-for (iin [1..N]): " nd-for (i in [1..N]):

C = min_cost C = min_cost
b = lower_bound(i) b = lower_bound(i)
if b >=c: if * && b >=c:

continue
cost = compute cost(i)

continue

Can choose

not to prune item.

if cost < min_cost:
min_cost = cost min_cost = cost
min_item = | | | min_item = |




NDSeq Specification Patterns

» Found three recipes for adding *'s:

1. Optimistic Concurrent Computation
(optimistic work with conflict detection)

2. Redundant Computation Optimization
(e.g., pruning in branch-and-bound)

3. Irrelevant Computation
(e.g., updating a performance counter)

» With these recipes, fairly simple to write
NDSeq specifications for our benchmarks.

|4



Nondeterministic Sequential Spec

» Parallelism correct if no more nondeterminism:

parallel-for (i in [1..N]): nd-for (i in [1..N]):
C = min_cost C = min_cost
b = lower_bound(i) b = lower_bound(i)
if b >=c: if * && b >=c:
continue continue
cost = compute cost(i) cost = compute_cost(i)
synchronized (lock):
if cost < min_cost: if cost < min_cost:
min_cost = cost min_cost = cost
min_item = | min_item = |

Yes.
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Testing Parallelism Correctness

Given: an execution of parallel program

Initial (e.g. of parallel loop iterations) Final
o e R S R S o R 2
[State SJ \ | ' [ State s, }

Yo / |dea:
\ \ Serlallzablllty'?

Initial , » Final
State s, State s,

|s there an equivalent execution of NDSeq spec?

|7



Conflict-Serializabllity is Too Strict

Classic Theorem:

| Thread 1: Cycle of conflict edges =>
c = min_cost Not serializable!
b = lower_bound(i) Thread 2:
if * [true]:

if b >=c: // false

min_cost = cost

cost = compute_cost(i) /
if cost < min_cost:

// false |
Q /

|18



Relaxing Conflict-Serializability

Can we set * to false?

Th 1:
read Check: Does body have

any side effects on execution?
' Thread 2:

C = min_cost
b = lower_bound(i
if * [true]:

if b >=c: // false

min_cost = cost

cost = compute_cost(i) / )
if cost < min_cost:

// false
& =y

19



Relaxing Conflict-Serializability

Can we set * to false?

Th 1:
| read Check: Does body have
C = min_cost any side effects on execution?
_b = lower_bound(i 2 Thread 2:
if * [false]: -

iFb>=c //false
min_cost = cost

cost = compute_cost(i) / J
if cost < min_cost:

// false
& J,

19



Relaxing Conflict-Serializability

Local c is no longer used,

Thread 1: so conflicting read of
min_cost is irrelevant.

C = min_cost

b = lower bound(i)\*~\ Thread 2
if * [false] Sse
\\u
min_cost = cost

cost = compute_cost(i) Theorem. No relevant

if cost < min_cost:

// false
o 4

conflict cycles => exists
equivalent NDSeq run!

20




Relaxing Conflict-Serializability

lteration 2:

Theorem. No relevant

conflict cycles => exists
equivalent NDSeq run! : _
min_cost = cost

lteration 1: / .
C = min_cost

b = lower_bound(i) Read different value for
if * [false]: min_cost, but overall
behavior is the same.

cost = compute cost(i)
if cost < min_cost:
// false

\ Yy,
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Traditional conflict serializability:

Thread 1 Thread 2

read 1 (a) Not serializable! 'ea
Thread 2 Cycle of conflicts. Thread 1 (a)

Thread 1 (b) Thread 1 (b)

+ flipping * + dynamic data dependence:

Thread 1 (a) w Thread 1 (a’) . Thread 2
Tral

Thread 2 Thread 2 Thread 1 (a’)

Thread 1 (b) Thread 1 (b) Thread 1 (b)
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Experimental Evaluation

» Wrote and tested NDSeq specifications for:

Java Grande, Parallel Java, Lonestar, DaCapo,
and nonblocking data structure.

Size: 40 to 300K lines of code.
Tested 5 parallel executions / benchmark.

» Two claims;
Easy to write NDSeq specifications.

Our technique serializes significantly more
executions than traditional methods.

24



Lines of # of Parallel

Benchmark Code Constructs # of if(*)
stack 40 1 2
queue 60 1 2
______meshrefine K LU I 2 |
8 sunflow 24K 4 4
& xalan 302K (R 3 |
keysearch3 200 2 0
o, mandelbrot 250 1 0
__ phylogeny 44K 2 3
series 800 ' O ________
(L'B crypt 1.1K 2 0
=  raytracer 1.9K 1 0
montecarlo 3.6K 1 0
25




Size of Serializability Warnings

Benchmark

Trace Traditional ‘ Our Technique
stack 1,744 5 (false) 0
queue 846 9 (false) 0
_____meshrefine 747K 30 (false) 0o
8 sunflow 24,250K 28 (false) 3 (false)
& xalan 16540K  6(false) 2 (false)
keysearch3 2,059K 2 (false) 0
o> mandelbrot 1,707K 1 (false) 0
| phylogeny 470K 6 6 |
series 11K 0 0
("'5 crypt 504K 0 0
= | raytracer 6,170K 1 1 |
montecarlo 1,897K 2 (false) 0
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Size of Serializability Warnings

Benchmark

Trace Traditional ‘ Our Technique
stack 1,744 5 (false) 0
queue 846 9 (false) 0
______meshrefine 747K [ 30(false) 0|
8 sunflow 24,250K 28 (false) 3 (false)
& xalan 16,540K | 6(false) 2 (faise) |
keysearch3 2,059K 2 (false) 0
o> mandelbrot 1,707K 1 (false) 0
___ phylogeny 470K 6 6
series 11K 0 0
("'5 crypt 504K 0 0
=  raytracer 6,170K 1 1
montecarlo 1,897K | 2 (false) 0 |
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Limitations

» Implementation
Dynamic data dependence ==> high overhead.
Instrumentation may miss some reads/writes.

» Commutativity:

increment(x);\

increment(x);
increment(y);

increment(y);/
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Summary

» Separate parallel & functional correctness.
Lightweight NDSeq specs for parallelism.
Sequentially verify functional correctness.

» Runtime checking of NDSeq specs.

Generalize conflict-serializability using if(*) and
dynamic data dependence.

» Future/Current Work:
Automatically inferring NDSeq specifications.
Static verification of parallel correctness.
Debugging on NDSeq,.
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