NDSeq: Runtime Checking for
Nondeterministic Sequential Specs
of Parallel Correctness

Jacob Burnim, Tayfun Elmas,
George Necula, Koushik Sen

University of California, Berkeley

Goal: Decompose effort in addressing
parallelism and functional correctness

Parallel Functional
program specification
¢
_/— _/—

Nondeterministic

sequential
Parallel specification Functional
program —_— specification
¢
//— \/

2

Goal: Decompose effort in addressing
parallelism and functional correctness

Parallelism Correctness. Functional Correctness.
Handle independently of Reason about

complex & sequential sequentially, without
functional properties. thread interleavings.

| Nondeterministic |
sequential

Parallel specification ™ Functional
program —_— specification
¢

_/- _/-

3

Goal: Decompose effort in addressing
parallelism and functional correctness

1. NDSeq: easy-to-write spec for parallelism.

2. Runtime checking of NDSeq specifications.

Nondeterministic

. Functional
specification

¢

Parallel
program

Outline

» Overview
» Motivating Example

» Nondeterministic Sequential (NDSeq)
Specifications for Parallel Correctness

» Runtime Checking of NDSeq Specifications
» Experimental Results

» Conclusion

Motivating Example

» Goal: Find minimum-cost item in list.

for (i in [1..N]>;‘m
C = min_cost

b = lower_bound(i)

if b >=c:
continue

cost = compute_cost(i)

if cost < min_cost: Output: min_cost and
min_cost = cost

min_item = |
| & >

min_item.

Motivating Example

» Goal: Find minimum-cost item in list.

for (i in [1..N]):

C = min_cost
b = lower_bound(i)
if b >= c: Prune when i cannot
continue have minimum-cost.
cost = compute_cost(i)

if cost < min_cost: Computes cost of
min_cost = cost item i. Expensive.
It min_item = |

J/

1 Computes cheap lower
bound on cost of i.

7

Motivating Example

» Goal: Find minimum-cost item in list.

for (i in [1..N]):
C = min_cost
b = lower_bound(i)
if b >= c: How do we

continue ~ parallelize this
cost = compute_cost(i) o
if cost < min_cost: code’

min_cost = cost
min_item = |

Parallel Motivating Example

» Goal: Find min-cost item in list, in parallel.

parallel-for (i in [1..N]): Loop iterations can be
C = min_cost run in parallel.

b = lower_bound(i)
if b >=c:
continue
cost = compute cost(i)
synchronized (lock):
if cost < min_cost: Updates to best are
min_cost = cost protected by lock.
min_item = |

Parallel Motivating Example

» Goal: Find min-cost item in list, in parallel.

parallel-for (i in [1..N]):
¢ = min_cost Claim: Parallelization

b = lower_bound(i) is clearly correct.
if b >=c:

continue

 How can we specity
cost = compute cost(i)

synchronized (lock): this parallel
if cost < min_cost: correctness?
min_cost = cost D

min_item = |
9

Specifying Parallel Correctness

» Idea: Use sequential program as spec.

parallel-for (i in [1..N]): for (i in [1..N]):
C = min_cost m C = min_cost
b = lower_bound(i) . b = lower_bound(i)

if b >=c: if b >=c:
continue m continue
cost = compute_cost(i) cost = compute_cost(i)
synchronized (lock):
if cost < min_cost: if cost < min_cost:
min_cost = cost min_cost = cost

min_item = | min_item = |
0

ParaIIeI-SequentiaI Equivalence?

1 bound 58 (2 bound 5 min_item: —

parallel-for 1in [1..N]):

c = min_cost N

b = lower_bound(i)

if b >=c:

continue Al prune?(1)

cost = compute cost(i)
synchronized (lock):
if cost < min_cost:
min_cost = cost
min_item = |

ParaIIeI-SequentiaI Equivalence?

1 bound 5 2 bound 5

parallel-for (i in [1..N]):

"¢ = min_cost

b = lower_bound(i)
if b >=c:
.___continue

\

cost = compute_cost(i)'

synchronized (lock):

if cost < min_cost:
min_cost = cost
min_item = |

min_item: —
min_cost: o

WAl prune?(1)

prune?(2)

ParaIIeI-SequentiaI Equivalence?

1 bound 5 2 bound 5

parallel-for (i in [1..N]):
C = min_cost
b = lower_bound(i)
if b >=c:

continue prune?(1)

“ cost = compute_cost(i)" prune?(2)

synchronized (lock): -
update(2)

if cost < min_cost:
min_cost = cost

min_item = | J

-

min_item: (2)
min_cost: 5

ParaIIeI-SequentiaI Equivalence?

bound 5 bound 5 min_item: (2)

min_cost: 5
parallel-for (i in [1..N]):
C = min_cost
b = lower_bound(i)
if b >=c:

continue prune?(1)

cost = compute cost(i)
synchronized (lock):

prune?(2)
update(2)
update(1)

if cost < min_cost:
min_cost = cost
min_item = |

ParaIIeI-SequentiaI Equivalence?

bound 5 bound 5 min_item: (2)

min_cost: 5
parallel-for (i in [1..N]): But sequential program:
C = min_cost * Returns min_item = (1).
b = lower_bound(i) * Prunes (2).
if b >=c:
continue prune?(1) prune?(1)

cost = compute cost(i)

) lock) prune?(2) update(1)
synchronized (lock):
if cost < min_cost: update(2) prune?(2)
min_cost = cost
— update(1
min_item = |

Specifying Parallel Correctness

» Parallel program has freedom to:

parallel-for (i in [1..N]): Process items in a
C = min_cost
b = lower_bound(i)
ifb>=c:

continue | Avoid pruning by
cost = compute_cost(i) scheduling check

synchronized (lock): before updates.
if cost < min_cost:

min_cost = cost
min_item = |

nondeterministic order.

12

Specifying Parallel Correctness

Must give sequential spec this freedom.

parallel-for (i in [1..N]): Process items in a

C = min cost inisti
_ n rministic order.
b = lower_bound(i) NORAEISFMINISHE Orce

ifb>=c:

continue | Avoid pruning by
cost = compute_cost(i) scheduling check

synchronized (lock): before updates.
if cost < min_cost:

min_cost = cost
min_item = |

12

Nondeterministic Sequential Spec

Runs iterations in any order.

parallel-for (iin [1..N]): " nd-for (i in [1..N]):

C = min_cost C = min_cost
b = lower_bound(i) b = lower_bound(i)
if b >=c: if * && b >=c:

continue
cost = compute cost(i)

continue

Can choose

not to prune item.

if cost < min_cost:
min_cost = cost min_cost = cost
min_item = | | | min_item = |

NDSeq Specification Patterns

» Found three recipes for adding *'s:

1. Optimistic Concurrent Computation
(optimistic work with conflict detection)

2. Redundant Computation Optimization
(e.g., pruning in branch-and-bound)

3. Irrelevant Computation
(e.g., updating a performance counter)

» With these recipes, fairly simple to write
NDSeq specifications for our benchmarks.

|4

Nondeterministic Sequential Spec

» Parallelism correct if no more nondeterminism:

parallel-for (i in [1..N]): nd-for (i in [1..N]):
C = min_cost C = min_cost
b = lower_bound(i) b = lower_bound(i)
if b >=c: if * && b >=c:
continue continue
cost = compute cost(i) cost = compute_cost(i)
synchronized (lock):
if cost < min_cost: if cost < min_cost:
min_cost = cost min_cost = cost
min_item = | min_item = |

Yes.

5

Outline

» Overview
» Motivating Example

» Nondeterministic Sequential (NDSeq)
Specifications for Parallel Correctness

» Runtime Checking of NDSeq Specs
» Experimental Results

» Conclusion

Testing Parallelism Correctness

Given: an execution of parallel program

Initial (e.g. of parallel loop iterations) Final
o e R S R S o R 2
[State SJ \ | ' [State s, }

Yo / |dea:
\ \ Serlallzablllty'?

Initial , » Final
State s, State s,

|s there an equivalent execution of NDSeq spec?

|7

Conflict-Serializabllity is Too Strict

Classic Theorem:

| Thread 1: Cycle of conflict edges =>
c = min_cost Not serializable!
b = lower_bound(i) Thread 2:
if * [true]:

if b >=c: // false

min_cost = cost

cost = compute_cost(i) /
if cost < min_cost:

// false |
Q /

|18

Relaxing Conflict-Serializability

Can we set * to false?

Th 1:
read Check: Does body have

any side effects on execution?
' Thread 2:

C = min_cost
b = lower_bound(i
if * [true]:

if b >=c: // false

min_cost = cost

cost = compute_cost(i) /)
if cost < min_cost:

// false
& =y

19

Relaxing Conflict-Serializability

Can we set * to false?

Th 1:
| read Check: Does body have
C = min_cost any side effects on execution?
_b = lower_bound(i 2 Thread 2:
if * [false]: -

iFb>=c //false
min_cost = cost

cost = compute_cost(i) / J
if cost < min_cost:

// false
& J,

19

Relaxing Conflict-Serializability

Local c is no longer used,

Thread 1: so conflicting read of
min_cost is irrelevant.

C = min_cost

b = lower bound(i)*~\ Thread 2
if * [false] Sse
\\u
min_cost = cost

cost = compute_cost(i) Theorem. No relevant

if cost < min_cost:

// false
o 4

conflict cycles => exists
equivalent NDSeq run!

20

Relaxing Conflict-Serializability

lteration 2:

Theorem. No relevant

conflict cycles => exists
equivalent NDSeq run! : _
min_cost = cost

lteration 1: / .
C = min_cost

b = lower_bound(i) Read different value for
if * [false]: min_cost, but overall
behavior is the same.

cost = compute cost(i)
if cost < min_cost:
// false

\ Yy,

21

Traditional conflict serializability:

Thread 1 Thread 2

read 1 (a) Not serializable! 'ea
Thread 2 Cycle of conflicts. Thread 1 (a)

Thread 1 (b) Thread 1 (b)

+ flipping * + dynamic data dependence:

Thread 1 (a) w Thread 1 (a’) . Thread 2
Tral

Thread 2 Thread 2 Thread 1 (a’)

Thread 1 (b) Thread 1 (b) Thread 1 (b)

22

Outline

» Overview
» Motivating Example

» Nondeterministic Sequential (NDSeq)
Specifications for Parallel Correctness

» Runtime Checking of NDSeq Specifications
» Experimental Results

» Conclusion

23

Experimental Evaluation

» Wrote and tested NDSeq specifications for:

Java Grande, Parallel Java, Lonestar, DaCapo,
and nonblocking data structure.

Size: 40 to 300K lines of code.
Tested 5 parallel executions / benchmark.

» Two claims;
Easy to write NDSeq specifications.

Our technique serializes significantly more
executions than traditional methods.

24

Lines of # of Parallel

Benchmark Code Constructs # of if(*)
stack 40 1 2
queue 60 1 2
______meshrefine K LU I 2 |
8 sunflow 24K 4 4
& xalan 302K (R 3 |
keysearch3 200 2 0
o, mandelbrot 250 1 0
__ phylogeny 44K 2 3
series 800 ' O ________
(L'B crypt 1.1K 2 0
= raytracer 1.9K 1 0
montecarlo 3.6K 1 0
25

Size of Serializability Warnings

Benchmark

Trace Traditional ‘ Our Technique
stack 1,744 5 (false) 0
queue 846 9 (false) 0
_____meshrefine 747K 30 (false) 0o
8 sunflow 24,250K 28 (false) 3 (false)
& xalan 16540K 6(false) 2 (false)
keysearch3 2,059K 2 (false) 0
o> mandelbrot 1,707K 1 (false) 0
| phylogeny 470K 6 6 |
series 11K 0 0
("'5 crypt 504K 0 0
= | raytracer 6,170K 1 1 |
montecarlo 1,897K 2 (false) 0

26

Size of Serializability Warnings

Benchmark

Trace Traditional ‘ Our Technique
stack 1,744 5 (false) 0
queue 846 9 (false) 0
______meshrefine 747K [30(false) 0|
8 sunflow 24,250K 28 (false) 3 (false)
& xalan 16,540K | 6(false) 2 (faise) |
keysearch3 2,059K 2 (false) 0
o> mandelbrot 1,707K 1 (false) 0
___ phylogeny 470K 6 6
series 11K 0 0
("'5 crypt 504K 0 0
= raytracer 6,170K 1 1
montecarlo 1,897K | 2 (false) 0 |

27

Limitations

» Implementation
Dynamic data dependence ==> high overhead.
Instrumentation may miss some reads/writes.

» Commutativity:

increment(x);\

increment(x);
increment(y);

increment(y);/

28

Outline

» Overview
» Motivating Example

» Nondeterministic Sequential (NDSeq)
Specifications for Parallel Correctness

» Runtime Checking of NDSeq Specifications
» Experimental Results

» Conclusion

29

Summary

» Separate parallel & functional correctness.
Lightweight NDSeq specs for parallelism.
Sequentially verify functional correctness.

» Runtime checking of NDSeq specs.

Generalize conflict-serializability using if(*) and
dynamic data dependence.

» Future/Current Work:
Automatically inferring NDSeq specifications.
Static verification of parallel correctness.
Debugging on NDSeq,.

30

PN

BERKELEY PARLAB

Questions?

Many thanks to Intel, Microsoft, other Parlab sponsors,
and NSF for supporting this work.

